Monographies


  1. Thurow, K.; Junginger, S.: Devices and Systems for Laboratory Automation. WILEY-VCH, Weinheim, 2022 (ISBN-13: 978-3527348329) view at publisher

Journals & Book Chapters


2025 / 2026

  1. Al-Okby, M.F.R.; Junginger, S.; Roddelkopf, T.; Thurow, K.: UWB-based Real-Time Indoor Positioning Systems: A Comprehensive Review. Applied Sciences (under review) 
  2. Huang, J.; Liu, H.; Junginger, S.; Thurow, K.: Mobile Robots in Automated Laboratory Workflows. SLAS Technologies (under review)

2023 / 2024

  1. Al-Okby, M.F.R.; Junginger, S.; Roddelkopf, T.; Huang, J.; Thurow, K.: Ambient Monitoring Portable Sensor Node for Robotic-Based Applications. Sensors. 2024, 24(4), 1295 view online
  2. Burgdorf, S.-J.; Roddelkopf, T.; Thurow, K.: Automated Crystallization Monitoring in Material Development using Computer Vision and Neuronal Networks. Chemie, Ingenieur, Technik, 2024, 96(8), pp. 1107-1115 view online
  3. Duan, C.; Junginger, S.; Thurow, K.; Liu, H.: Learning Stereo Visual Odometry Approach Based on Optical Flows and Depth Information. Appl. Sci. 2023, 13(10) (doi: 10.3390/app13105842) view online
  4. Huang, J.; Junginger, S.; Liu, H.; Thurow, K.: Correcting of Unexpected Localization Measurement for Indoor Automatic Mobile Robot Transportation Based on Neural Networks. Transportation Safety and Environment. 2023. (doi:10.1093/tse/tdad019) view online
  5. Huang, J.; Junginger, S.; Liu, H.; Thurow, K.: Indoor Positioning Systems for Mobile Robots: A Review. Robotics. 2023.R 12(2), pp. 47 (doi:10.3390/robotics/12020047) view online
  6. Hunnisett, L.M. et.al.: The Events blind test of crystal prediction: structure generation methods. Acta Cryst. B80
  7. Huang, J.; Junginger, S.; Liu, H.; Thurow, K.: Indoor Positioning Systems for Mobile Robots. Scholarly Community Encyclopedia. 2023. view online
  8. Jiang, Y.; Fajkruldeen, H.; Pizzuot, G.; Longley, L.; He, A.; Dai, T.; Clowes, R. Rankin, N.; Cooper, A. I.: Autonomous biomimetic solid dispensing using a dual arm robotic manipulator. Digital Discovery, 2023 (2), pp. 1733-1744. (doi:10.1039/D3DD00075C)
  9. Lunt, A.M.; Fakhruldeen, H.; Pizzuto, G.; Longley, L.; White, A.; Rankin, N.; Clowes, R.; Alston, B.; Gigli, L.; Day, G.M.; Cooper, A.I.; Chong, S.Y.: Modular, multi-robot integration of laboratories: an autonomous workflow for solid-state chemistry. Chemical Science, 2024, view online
  10. Maffetone, P. M.; Friederich P.; ...; Pizzuto, G.; et al: What is missing in autonomous discovery: open challenges for the community. Digital Discovery, 2023 (2), pp. 1644-1659. (doi:10.1039/D3DD00143A)
  11. O'Shaughnessy, M.; Glover, J.; Hafizi, R.; Mounib Barri, R.; Clowes, R.; Chong, S..; Argent, S.P.; Day, G.M.; Cooper, A.I. Porous isoreticular non-metal organic frameworks. Nature, 603, 2024, pp. 102-108.
  12. Patel, J.; Leduc, Z.; Avila, A.G.N.; Glover, J.A.; Wu, K.; Zhang, Y.; Zhang, J.; Zhai, X.; Jing, H.; Chen, A.M.; Chartrand, D.; Day, G.M.; Wüst, J.D.: Exploring Polymorphism: Hydrochloride Salts of Pitolisant and Analogues. Cryst. Growth Des., 2024, view online
  13. Shields, C.E: Wang, X.; Fellowes, T.; Clowes, L.; Chen, G.; Day, G.M.; Slaterm A.G.; Ward, J.W.; Little, M.A.; Cooper, A.I.: Angew. Chem. Int. Ed., 62, e202303167
  14. Tarif, R.; Al-Okby, M. F. R.; Roddelkopf, T.; Thurow, K.: Mobile Gas Sensing for Laboratory Infrastructure. IIUM Engineering Journal. 2024 (in print)
  15. Thurow, K.; Bach, A.; Cooper, A.; Burgdorf, S.-J.: Automated Monitoring of Crystallization Processes. GIT Laboratory Journal. 2023. view online
  16. Thurow, K.; Bach, A.; Cooper, A.; Burgdorf, S.-J.: Automatisiertes Monitoring von Kristallisationsprozessen. GIT-Laborfachzeitschrift. view online
  17. Thurow, K.; Junginger, S.; Huang, J.: Infrastruktur für Mobile Roboter im Labor. Wenn Roboter Fahrstuhl fahren. GIT -Laborfachzeitschrift. 2024
  18. Thurow, K.; Junginger, S.; Huang, J.: When Robots take the Elevator. Infrastructure for mobile robots in the laboratory. Wiley Analytical Science Magazine, 2024, 6 
  19. Thurow, K..; Junginger, S.; Roddelkopf, T.: Automated Capping - Expanding the functionality of automation systems. Wiley Analytical Science Magazine. 2024
  20. Walker, M.; Pizzuto, G.; Fakhruldeen, H.; Cooper, A. I.: Go with the flow: deep learning methods for autonomous viscosity estimations. Digital Discovery, 2023 (2), pp. 1540-1547. (doi:10.1039/D3DD00109A)
  21. Wu, H.; Junginger, S.; Roddelkopf; T.; Liu, H.; Thurow, K.: BLE Beacons for Sample Position Estimation in a Life Science Automation Laboratory. Transportation Safety and Environment. 6(3) 2023, tda033 (doi:10.1093/tse/tdad033) view online
  22. Wu, H.; Liu, H.; Roddelkopf, T.; Thurow, K.: BLE Beacon Based Floor Detection in a Multi-Floor Automation Laboratory. Transportation Safety and Environment. 2023. (doi:10.1093/tse/tdad024). view online 

 

2021 / 2022

  1. Al-Okby, M. F. R.; Neubert, S.; Roddelkopf, T.; Thurow, K.: Mobile Detection and Alarming Systems for Hazardous Gas and Volatile Chemicals in Laboratories and Industrial Locations. Sensors, 21(23), 2021, 8128 (doi:10.3390/s21238128). view online
  2. Al-Okby, M.F.R.; Roddelkopf, T.; Fleischer, H.; Ewald, H.; Thurow, K.: Evaluating a Novel Gas Sensor for Ambient Monitoring in Automated in Life Science Laboratories. Sensors, 22(1), 2022, 8161 view online
  3. Al-Okby, M.F.R.; Neubert, S.; Roddelkopf, T.; Fleischer, H.; Thurow, K.: Evaluating the IAQ and TOVC Parameter-Based Sensors for Hazardous Gases Detection and Alarming Systems. Sensors. 22(4), 2022, 1473 view online
  4. Clements, R.J.; Dickman, J.; Johal, J. et al. Roles and opportunities for machine learning in organic molecular crystal structure. MRS Bulletin, 2022, 47, pp. 1054-1062
  5. Neubert, S.; Roddelkopf, T.; Al-Okby, M. F. R.; Junginger, S.; Thurow, K.: Flexible IoT Gas Sensor Node for automated Life Science Environments using stationary and mobile Robots. Sensors, 21(21), 2021, 7347 (doi:10.3390/s21217347). view online
  6. Thurow, K.: System Concepts for Robots in Life Science Applications. Applied Sciences, 12, 2022, 3257 view online
  7. Thurow, K.; Gu, X., Göde, B.; Roddelkopf, T.; Fleischer, H.; Stoll, N.; Neubert, S.: Integrating Mobile Robots into Laboratory Processes - A suitable Workflow Management System. SLAS Technologies, 26(2), 2021, pp. 232-235. view online
  8. Thurow, K.; Neubert, S.: Innovative Sensor Technology for Emergency Detection in Life Science Laboratories. Book Chapter. In: Deserno, T.: Accident and Emergency Informatics. IOS Book on A&EI, 2022, pp. 62-87 (doi:10.3233/SHTI220008). view online
  9. Zhu, Q.; Johal, J.; Widdowson, D.E.; Pang, Z.F.; Li, B.Y.; Kane, C.M.; Kurlin, V.; Day, G.M.; Little, M.A.; Cooper, A.I.: Analogy Powered by Prediction and Structural Invariants: Computationally Led Discovery of a Mesoporous Hydrogen-Bonded Organic Cage Crystal. Journal of the American Chemical Society. 144(22), pp: 9893-9901, doi:10.1021/jacs.2c02653 view online

Peer Reviewed Proceedings


2023 /2024

  1. Al-Okby, M.F.R.; Roddelkopf, T.; Thurow, K.: Low-Cost IoT-based Portable Sensor Node for Fire and Air Pollution Detection and Alarming. Proceedings, 2024 IEEE Sensors Application Symposium (SAS), Naples, IT, 23.-25.07.2024, pp. 1-6, DOI: 10.1109/SAS60918.2024.10636455)
  2. Al-Okby, M.F.R.; Roddelkopf, T.; Fleischer, H.; Ewald, H.; Thurow, K.: Testing and Integration of Commercial Hydrogen Sensor for Ambient Monitoring Application. Proceedings, IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara (Romania),  2023, May 23-26, pp. 000811-000818.  (doi:10.1109/SACI58269.2023.10158643) view online 
  3. Al-Okby, M.F.R.; Roddelkopf, T.; Burgdorf, S.-J.; Thurow, K.: Multi-Tag UWB-based Indoor Positioning System for Objects Tracking, Proceedings, IEEE SISY Conference, Pula, Croatia,  19.-21.09.2024 (presented) 
  4. Butterworth, A.; Pizzuto, G.; Pecyna, L.; Cooper, A. I.: Leveraging Multi-modal Sensing for Robotic Insertion Tasks in R&D Laboratories. Proceedings, 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE). Auckland (New Zealand), 2023, pp. 1-8. (doi:10.1109/CASE56687.2023.10260414).
  5. Burgdorf, S.-J.; Roddelkopf, T.; Cooper, A., Thurow, K.: Computer Vision Based Crystallization Monitoring in Automated Laboratories. Proceedings. The 2023 International Conference on Images, Signals, and Computing (ICISC 2023). 22.-27.05.2023, Chengu (China). 1278302 (doi:1117/12.2692822).
  6. Huang, J.; Junginger, S.; Roddelkopf, T.; Liu, H.; Thurow, K.: Proceeding. IoT-Based Solutions for Mobile Robots Utilizig Closed-System Elevators in Life Science Laboratories. IEEE 2024 7th Iberian Robotics Conference (ROBOT), Madrid (Spain), 06.-08.11.2024 (presented)
  7. Huang, J.; Thurow, K.; Junginger, S.; Fleischer, H.; Liu, H.; Do, V. Q.: IoT Based Labware Tracking During Mobile Robot Transportation. Proceedings, IEEE International Conference on Control, Automation and Information (ICCAIS 2023), 27.-29.11.2023, Hanoi (VN), presented

 

2022 / 2023

  1. Al-Okby, M.F.R.; Neubert, S.; Roddelkopf, T.; Thurow, K.; Fleischer, H.: Evaluating of IAQ-index and TVOC as Measurement Parameters for IoT-based Hazardous Gases Detection and Alarming Systems. Proceedings, IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and InformaticsMarch 2-5, 2022 (presented)
  2. Al-Okby, M.F.R.; Neubert, S.; Roddelkopf, T.; Thurow, K.: Integration and Testing of Novel MOX Gas Sensors for IoT-based Indoor Air Quality Monitoring. Proceedings, 21st International Symposium on Computational Intelligence and Informatics. Budapest (Hungary), November 18-20, 2021, 173-180. view online
  3. Al-Okby, M.F.R.; Roddelkopf, T.; Neubert, S.; Fleischer, H.; Thurow, K.: Robot-based Environmental Monitoring in Life Science Laboratories. Proceedings, ICCC 2022, 10th Jubilee IEEE International Conference on Computational Cybernetics and Cyber-Medical SystemsJuly 6-9 2022, Reykjavik, Iceland
  4. Fakhruldeen, H.; Pizzuto, G.; Głowacki, J.; Cooper, A.I.: ARChemist: Autonomous Robotic Chemistry System Architecture. Proceedings, 2022 International Conference on Robotics and Automation (ICRA), Philadelphia (PA, USA), pp. 6013-6019. (doi:10.1109/ICRA46639.2022.9811996)
  5. Pizzuto, G.; De Berardinis, J.; Longley, L.; Fakhruldeen, H.; Cooper, A. I.: SOLIS: Autonomous Solubility screening using Deep Neural Networks. Proceedings, 2022 International Joint Conference in Neural Networks (IJCNN), Padua (It) 2022, pp.1-7. (doi:10.1109/IJCNN55064.2022.9892533